Video frame interpolation is the task of creating an interface between two adjacent frames along the time axis. So, instead of simply averaging two adjacent frames to create an intermediate image, this operation should maintain semantic continuity with the adjacent frames. Most conventional methods use optical flow, and various tools such as occlusion handling and object smoothing are indispensable. Since the use of these various tools leads to complex problems, we tried to tackle the video interframe generation problem without using problematic optical flow. To enable this, we have tried to use a deep neural network with an invertible structure and developed an invertible U-Net which is a modified normalizing flow. In addition, we propose a learning method with a new consistency loss in the latent space to maintain semantic temporal consistency between frames. The resolution of the generated image is guaranteed to be identical to that of the original images by using an invertible network. Furthermore, as it is not a random image like the ones by generative models, our network guarantees stable outputs without flicker. Through experiments, we confirmed the feasibility of the proposed algorithm and would like to suggest invertible U-Net as a new possibility for baseline in video frame interpolation. This paper is meaningful in that it is the worlds first attempt to use invertible networks instead of optical flows for video interpolation.


翻译:视频框架的内插是沿时间轴在两个相邻框架之间创建一个界面的任务。 因此, 与其简单地平均两个相邻框架以创建中间图像, 不如将两个相邻框架相邻框架相邻, 操作应该保持与相邻框架的语义连续性。 多数常规方法使用光学流, 以及隐蔽处理和物体平滑等各种工具是不可或缺的。 由于使用这些不同工具会导致复杂的问题, 我们试图在不使用有问题的光学流的情况下解决视频间生成问题。 为了做到这一点, 我们试图使用一个带有不可逆结构的深层神经网络, 并开发了一个不可逆的 U- Net, 这是一种经过修改的正常流。 此外, 我们提议了一种具有新一致性的学习方法, 在潜在空间中, 以新的一致性损失来保持隐性的时间一致性。 生成图像的分辨率与原始图像的分辨率一样, 使用一个不可逆的网络。 此外, 由于它不是像样模型那样的随机图像, 我们的网络保证了稳定的输出结果。 通过实验, 我们确认了拟议的算法的可行性, 并且想将U- Net 显示它作为在光学图像网络中的一种新可能的尝试, 在光学边框间网络中, 。

0
下载
关闭预览

相关内容

【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
专知会员服务
19+阅读 · 2021年3月18日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
3+阅读 · 2018年4月10日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
19+阅读 · 2021年1月14日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
3+阅读 · 2018年4月10日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员