We develop optimal control strategies for autonomous vehicles (AVs) that are required to meet complex specifications imposed as rules of the road (ROTR) and locally specific cultural expectations of reasonable driving behavior. We formulate these specifications as rules, and specify their priorities by constructing a priority structure, called \underline{T}otal \underline{OR}der over e\underline{Q}uivalence classes (TORQ). We propose a recursive framework, in which the satisfaction of the rules in the priority structure are iteratively relaxed in reverse order of priority. Central to this framework is an optimal control problem, where convergence to desired states is achieved using Control Lyapunov Functions (CLFs) and clearance with other road users is enforced through Control Barrier Functions (CBFs). We present offline and online approaches to this problem. In the latter, the AV has limited sensing range that affects the activation of the rules, and the control is generated using a receding horizon (Model Predictive Control, MPC) approach. We also show how the offline method can be used for after-the-fact (offline) pass/fail evaluation of trajectories - a given trajectory is rejected if we can find a controller producing a trajectory that leads to less violation of the rule priority structure. We present case studies with multiple driving scenarios to demonstrate the effectiveness of the algorithms, and to compare the offline and online versions of our proposed framework.


翻译:我们为自动车辆制定了最佳控制战略,这些车辆是达到作为道路规则(ROTR)和地方特定文化对合理驾驶行为的期望而必须达到的复杂规格所需要的。我们将这些规格作为规则制定,并通过建立优先结构,即所谓的“下线”{T}Trootline{untal{or}derline{OR}dere e/下线 ⁇ uvalence class (TORQ) 来具体指定其优先事项。我们提议了一个循环框架,在这个框架中,优先结构规则的满意度被反复放松,以相反的优先次序顺序排列。这个框架的中心是一个最佳控制问题,即通过控制Lyappunov函数(CLLFs)和通过控制障碍功能(CBFs)与其他道路使用者实现趋同,并与其他道路使用者的通关。我们提出了解决这一问题的离线和在线方法。在后者中,AV的感测范围有限,影响规则的启动,而控制则是利用一种后向地平线(Modelive Controduction,MPC)的方法产生控制。我们还展示了离线的方法,在事后(offline)使用(Cline)通过控制过关功能)过路/faild 和对规则的轨图进行我们无法判断的路径的研究研究,如果我们找到一个不那么,那么,那么,那么,我们可以对规则的上对规则的路径的路径的偏向后向后向后向后向后向后向后向方向进行我们可以找到的偏向,我们可以找到一个不前导式分析。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年11月20日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年11月20日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员