3D spatial information is known to be beneficial to the semantic segmentation task. Most existing methods take 3D spatial data as an additional input, leading to a two-stream segmentation network that processes RGB and 3D spatial information separately. This solution greatly increases the inference time and severely limits its scope for real-time applications. To solve this problem, we propose Spatial information guided Convolution (S-Conv), which allows efficient RGB feature and 3D spatial information integration. S-Conv is competent to infer the sampling offset of the convolution kernel guided by the 3D spatial information, helping the convolutional layer adjust the receptive field and adapt to geometric transformations. S-Conv also incorporates geometric information into the feature learning process by generating spatially adaptive convolutional weights. The capability of perceiving geometry is largely enhanced without much affecting the amount of parameters and computational cost. We further embed S-Conv into a semantic segmentation network, called Spatial information Guided convolutional Network (SGNet), resulting in real-time inference and state-of-the-art performance on NYUDv2 and SUNRGBD datasets.


翻译:已知3D空间信息有益于语义分割任务。大多数现有方法将 3D 空间数据作为附加输入,形成双流分割网络,分别处理 RGB 和 3D 空间信息。这一解决方案大大增加了推断时间,严重限制了实时应用的范围。为解决这一问题,我们提议空间信息引导演进(S-Conv),允许高效的 RGB 特征和 3D 空间信息整合。S-Conv 有能力推断3D 空间信息引导的演进内核的取样抵消,帮助卷发层调整可接收场并适应几何转换。S-Conv 还将几何信息纳入地貌学习过程,生成空间适应性振动权重。感测几何能力在很大程度上得到了增强,但不影响参数和计算成本的大小。我们进一步将S-Conv 嵌入一个语义分割网络,称为空间信息引导进化网络(SGNet ),导致NYUDVv2 和 SURGBD 数据设置的实时推断和状态性表现。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
ECCV 2020 五项大奖出炉!普林斯顿邓嘉获最佳论文奖
专知会员服务
17+阅读 · 2020年8月25日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
ECCV 2020 五项大奖出炉!普林斯顿邓嘉获最佳论文奖
专知会员服务
17+阅读 · 2020年8月25日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Top
微信扫码咨询专知VIP会员