Parameter reconstruction is a common problem in optical nano metrology. It generally involves a set of measurements, to which one attempts to fit a numerical model of the measurement process. The model evaluation typically involves to solve Maxwell's equations and is thus time consuming. This makes the reconstruction computationally demanding. Several methods exist for fitting the model to the measurements. On the one hand, Bayesian optimization methods for expensive black-box optimization enable an efficient reconstruction by training a machine learning model of the squared sum of deviations. On the other hand, curve fitting algorithms, such as the Levenberg-Marquardt method, take the deviations between all model outputs and corresponding measurement values into account which enables a fast local convergence. In this paper we present a Bayesian Target Vector Optimization scheme which combines these two approaches. We compare the performance of the presented method against a standard Levenberg-Marquardt-like algorithm, a conventional Bayesian optimization scheme, and the L-BFGS-B and Nelder-Mead simplex algorithms. As a stand-in for problems from nano metrology, we employ a non-linear least-square problem from the NIST Standard Reference Database. We find that the presented method generally uses fewer calls of the model function than any of the competing schemes to achieve similar reconstruction performance.
翻译:光学纳米计量仪是一个常见问题。 光学纳米计量仪的重建是一个常见问题。 它一般涉及一套测量方法, 试图将测量过程的数值模型与数字模型相匹配。 模型评估通常涉及解决马克斯韦尔的方程式, 从而耗费时间。 这使得重建具有计算上的要求。 有几种方法可以将模型与测量方法相匹配。 一方面, 昂贵黑盒优化的巴耶西亚优化方法能够通过培训机器学习偏差平方和平方数模型来进行有效的重建。 另一方面, 曲线配置算法, 如Levenberg- Marquardt 方法, 将所有模型输出和相应测量值之间的偏差考虑在内, 从而能够快速实现本地的趋同。 在本文中, 我们展示了一种将这两种方法结合起来的巴伊西亚目标矢量优化方案。 我们比较了所介绍的方法的性能, 常规的巴耶斯最优化方案, 以及L- BFIS- B 和 Nelder- Meadx 简单算法。 作为纳米计量方法中的问题的替代点, 我们通常使用一种非标准级的比标准级的比标准化方法, 格式的比标准级的比标准级的比标准级的比标准级的比标准级系统更小的检索。