We propose new methods to synthesize control barrier function (CBF)-based safe controllers that avoid input saturation, which can cause safety violations. In particular, our method is created for high-dimensional, general nonlinear systems, for which such tools are scarce. We leverage techniques from machine learning, like neural networks and deep learning, to simplify this challenging problem in nonlinear control design. The method consists of a learner-critic architecture, in which the critic gives counterexamples of input saturation and the learner optimizes a neural CBF to eliminate those counterexamples. We provide empirical results on a 10D state, 4D input quadcopter-pendulum system. Our learned CBF avoids input saturation and maintains safety over nearly 100% of trials.
翻译:我们提出新的方法来综合基于控制屏障功能的安全控制器,避免输入饱和,这可能导致安全侵犯。特别是,我们的方法是为高维、一般非线性系统制定,而这类工具却很少。我们利用机器学习的技术,如神经网络和深层学习,以简化非线性控制设计中的这一具有挑战性的问题。这种方法包括一个学习者-批评者-批评者结构,其中评论者对输入饱和进行反增殖,而学习者优化神经 CBF,以消除这些反光标。我们提供了10D州、4D输入的四氯二苯-双苯系统的经验结果。我们学到的CBF避免输入饱和在近100%的试验中保持安全性。