The Random Geometric Graph (RGG) is a random graph model for network data with an underlying spatial representation. Geometry endows RGGs with a rich dependence structure and often leads to desirable properties of real-world networks such as the small-world phenomenon and clustering. Originally introduced to model wireless communication networks, RGGs are now very popular with applications ranging from network user profiling to protein-protein interactions in biology. RGGs are also of purely theoretical interest since the underlying geometry gives rise to challenging mathematical questions. Their resolutions involve results from probability, statistics, combinatorics or information theory, placing RGGs at the intersection of a large span of research communities. This paper surveys the recent developments in RGGs from the lens of high dimensional settings and non-parametric inference. We also explain how this model differs from classical community based random graph models and we review recent works that try to take the best of both worlds. As a by-product, we expose the scope of the mathematical tools used in the proofs.
翻译:随机几何图( RGG ) 是具有内在空间代表性的网络数据的随机图表模型。 几何直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线,直线直线直线直线直线直线直线,直线直线直线直线直线直线直线直线直线直线直线线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直径直线直径直线直径直的直线直线直径直线直径直线直线直线直径直线直径直线直径直径直径直径直径直径直径直径直线直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直飞直的直直直直直径直径直径直径直径直飞向直径直径直径直径直径直径直至直的直飞向直径直径直径直飞向直径直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直飞向直的轨道直飞向直飞向直飞向直飞向直飞向直飞向直飞向直的轨道。。 。 。 。 直飞向直飞向直飞向直飞向直飞向直向直向直飞向直飞向直飞向直飞向直向直向直飞向直飞向直向直飞向直向直飞向直飞向直