We study a variant of the canonical $k$-center problem over a set of vertices in a metric space, where the underlying distances are apriori unknown. Instead, we can query an oracle which provides noisy/incomplete estimates of the distance between any pair of vertices. We consider two oracle models: Dimension Sampling where each query to the oracle returns the distance between a pair of points in one dimension; and Noisy Distance Sampling where the oracle returns the true distance corrupted by noise. We propose active algorithms, based on ideas such as UCB and Thompson sampling developed in the closely related Multi-Armed Bandit problem, which adaptively decide which queries to send to the oracle and are able to solve the $k$-center problem within an approximation ratio of two with high probability. We analytically characterize instance-dependent query complexity of our algorithms and also demonstrate significant improvements over naive implementations via numerical evaluations on two real-world datasets (Tiny ImageNet and UT Zappos50K).
翻译:我们研究在公制空间的一组脊椎上,其深处距离未知,因此,我们研究一套金币美元中间点问题的变体。相反,我们可以查询一个神器,该神器为任何一对脊椎之间的距离提供吵杂/不完整的估计。我们考虑两种神器模型:尺寸抽样,每个神器的每个查询都返回一个维度中的一对点之间的距离;以及Noisy距离抽样,其中神器返回了被噪音破坏的真正距离。我们根据在密切相关的多Armed Bandit 问题中开发的UCB和Thompson抽样等概念,提出积极的算法,这些算法可适应性地决定向神器发送查询,并能够在两种近似率(高概率)内解决美元中间点问题。我们通过对两个真实世界数据集(Tiny imageNet和UT Zappos50K)进行的数字评估,分析我们算法的根据实例来辨别我们算法的复杂度,并表明对天化执行的重大改进。