Millions of stray animals suffer on the streets or are euthanized in shelters every day around the world. In order to better adopt stray animals, scoring the pawpularity (cuteness) of stray animals is very important, but evaluating the pawpularity of animals is a very labor-intensive thing. Consequently, there has been an urgent surge of interest to develop an algorithm that scores pawpularity of animals. However, the dataset in Kaggle not only has images, but also metadata describing images. Most methods basically focus on the most advanced image regression methods in recent years, but there is no good method to deal with the metadata of images. To address the above challenges, the paper proposes an image regression model called PETS-SWINF that considers metadata of the images. Our results based on a dataset of Kaggle competition, "PetFinder.my", show that PETS-SWINF has an advantage over only based images models. Our results shows that the RMSE loss of the proposed model on the test dataset is 17.71876 but 17.76449 without metadata. The advantage of the proposed method is that PETS-SWINF can consider both low-order and high-order features of metadata, and adaptively adjust the weights of the image model and the metadata model. The performance is promising as our leadboard score is ranked 15 out of 3545 teams (Gold medal) currently for 2021 Kaggle competition on the challenge "PetFinder.my".


翻译:世界上每天,为了更好地采纳流浪动物,对流浪动物的爪牙(精度)的评分非常重要,但评估动物爪牙的评分是一个非常劳力密集型的事情。因此,人们急切地感兴趣地开发一种算法来分分分动物的爪子。然而,卡格格勒的数据集不仅有图像,而且还有描述图像的元数据。大多数方法基本上侧重于近年来最先进的图像回归方法,但是没有处理图像元数据的好方法。为了应对上述挑战,本文提出了一个名为PETS-SWINF的图像回归模型,该模型将考虑图像的元数据。我们基于卡格勒竞争数据集的结果表明,PETS-SWINF比仅基于图像模型的模型有优势。我们的结果显示,测试数据集的拟议模型损失了17.71876,但17.76449没有元数据。为了应对上述挑战,拟议方法的优点是:“PETS-S-SWINF”的图象回归模型模型模型是:“目前PETS-S-SWINF的排名第15级模型和排名前列的模型,可以考虑“15级模型中的低级”的进度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员