We develop a penalized two-pass regression with time-varying factor loadings. The penalization in the first pass enforces sparsity for the time-variation drivers while also maintaining compatibility with the no-arbitrage restrictions by regularizing appropriate groups of coefficients. The second pass delivers risk premia estimates to predict equity excess returns. Our Monte Carlo results and our empirical results on a large cross-sectional data set of US individual stocks show that penalization without grouping can yield to nearly all estimated time-varying models violating the no-arbitrage restrictions. Moreover, our results demonstrate that the proposed method reduces the prediction errors compared to a penalized approach without appropriate grouping or a time-invariant factor model.
翻译:我们开发了一种惩罚性的双向回归,同时有时间的分层因素负荷。 第一次通过强制实施对时间变换驱动者的宽度的处罚,同时通过规范适当类别的系数来保持与无套利限制的兼容性。 第二次通过提供风险溢价估计数以预测股票超额回报。 我们的蒙特卡洛(Monte Carlo)结果和我们关于美国个人库存大量跨部门数据集的经验结果显示,不分组的处罚可以让几乎所有违反无套利限制的估计时间变换模式屈服。 此外,我们的结果表明,拟议方法减少了预测错误,而没有适当的分组或时间变化因素模型,而没有惩罚性方法。