This paper presents a novel feature fusion-based deep learning model (called CASU2Net) for fault detection in offshore wind turbines. The proposed CASU2Net model benefits of a two-step early fusion to enrich features in the final stage. Moreover, since previous studies did not consider uncertainty while model developing and also predictions, we take advantage of Monte Carlo dropout (MC dropout) to enhance the certainty of the results. To design fault detection model, we use five sensors and a sliding window to exploit the inherent temporal information contained in the raw time-series data obtained from sensors. The proposed model uses the nonlinear relationships among multiple sensor variables and the temporal dependency of each sensor on others which considerably increases the performance of fault detection model. A 10-fold cross-validation approach is used to verify the generalization of the model and evaluate the classification metrics. To evaluate the performance of the model, simulated data from a benchmark floating offshore wind turbine (FOWT) with supervisory control and data acquisition (SCADA) are used. The results illustrate that the proposed model would accurately disclose and classify more than 99% of the faults. Moreover, it is generalizable and can be used to detect faults for different types of systems.
翻译:本文件介绍了在近海风力涡轮机中发现故障的新颖的基于聚合的深层次学习模型(称为CASU2Net),拟议的CASU2Net模型利用了分两步的早期聚合来丰富最后阶段的特征,此外,由于以前的研究没有考虑到模型开发和预测时的不确定性,我们利用蒙特卡洛辍学(MC辍学)来提高结果的确定性。为设计故障检测模型,我们使用了五个传感器和一个滑动窗口,以利用从传感器获得的原始时间序列数据中所含的固有时间信息。拟议的模型使用多个传感器变量之间的非线性关系,以及每个传感器对显著提高故障检测模型性能的其他传感器的时间依赖性。此外,采用了10倍交叉验证方法来核查模型的通用性并评估分类指标。为评估模型的性能,使用了具有监督控制和数据获取的海上浮浮转风轮基准(FOWT)的模拟数据。结果显示,拟议的模型将准确披露和分类超过99%的缺陷。此外,还使用了一种10倍的交叉验证方法,可用于检测各种缺陷。