Preserving privacy is a growing concern in our society where sensors and cameras are ubiquitous. In this work, for the first time, we propose a trainable image acquisition method that removes the sensitive identity revealing information in the optical domain before it reaches the image sensor. The method benefits from a trainable optical convolution kernel which transmits the desired information while filters out the sensitive content. As the sensitive content is suppressed before it reaches the image sensor, it does not enter the digital domain therefore is unretrievable by any sort of privacy attack. This is in contrast with the current digital privacy-preserving methods that are all vulnerable to direct access attack. Also, in contrast with the previous optical privacy-preserving methods that cannot be trained, our method is data-driven and optimized for the specific application at hand. Moreover, there is no additional computation, memory, or power burden on the acquisition system since this processing happens passively in the optical domain and can even be used together and on top of the fully digital privacy-preserving systems. The proposed approach is adaptable to different digital neural networks and content. We demonstrate it for several scenarios such as smile detection as the desired attribute while the gender is filtered out as the sensitive content. We trained the optical kernel in conjunction with two adversarial neural networks where the analysis network tries to detect the desired attribute and the adversarial network tries to detect the sensitive content. We show that this method can reduce 65.1% of sensitive content when it is selected to be the gender and it only loses 7.3% of the desired content. Moreover, we reconstruct the original faces using the deep reconstruction method that confirms the ineffectiveness of reconstruction attacks to obtain the sensitive content.


翻译:在感应器和照相机无处不在的社会中,保护隐私是社会日益关注的一个问题。在这项工作中,我们首次提出一种可训练的图像获取方法,在光学域域内清除敏感身份,在光学域内披露信息,然后到达图像传感器。这种方法得益于一个经过训练的光学聚合内核,在过滤敏感内容时传播所需信息。由于敏感内容在进入图像传感器之前被压制,因此它不会被任何敏感隐私攻击所无法检索到数字域。这与目前数字隐私保存方法不同,这些方法很容易直接进入攻击。此外,我们建议采用一种可训练的图像获取方法,在光学域网到达图像传感器之前,将敏感身份显示在光学域网内显示的敏感信息,因此,敏感内容在进行重组时,我们只能用经训练的智能隐私保存方法来显示其精细微的网络内存效率。我们用经训练的智能网络内存的内存系统在进行感应的性别识别时,只能用经精细的内存的内存的内存数据。我们用这些内存的内存的内存的内存的内存分析,我们用来显示这些内存的内存的内存的内存的内存的内存的内存的内存的内存的内存。我们想要的内存的内存的内存的内存的内存内存内存,从而显示的内存的内存的内存的内存的内存内存的内存。我们的内存内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存。我们的内存的内存的内存的内存的内存的内存的内存的内存的内存,我们所。我们所的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存内存内存的内存的内存的内存。我们的内存内存的内存。我们的内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
16+阅读 · 2020年8月23日
Python图像处理,366页pdf,Image Operators Image Processing in Python
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
使用《Deep Image Prior》来做图像复原
AI研习社
7+阅读 · 2019年3月2日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
16+阅读 · 2020年8月23日
Python图像处理,366页pdf,Image Operators Image Processing in Python
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
使用《Deep Image Prior》来做图像复原
AI研习社
7+阅读 · 2019年3月2日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员