The recent progress of diffusion models in terms of image quality has led to a major shift in research related to generative models. Current approaches often fine-tune pre-trained foundation models using domain-specific text-to-image pairs. This approach is straightforward for X-ray image generation due to the high availability of radiology reports linked to specific images. However, current approaches hardly ever look at attention layers to verify whether the models understand what they are generating. In this paper, we discover an important trade-off between image fidelity and interpretability in generative diffusion models. In particular, we show that fine-tuning text-to-image models with learnable text encoder leads to a lack of interpretability of diffusion models. Finally, we demonstrate the interpretability of diffusion models by showing that keeping the language encoder frozen, enables diffusion models to achieve state-of-the-art phrase grounding performance on certain diseases for a challenging multi-label segmentation task, without any additional training. Code and models will be available at https://github.com/MischaD/chest-distillation.


翻译:注意:翻译中的专有名词已用英文标注。

0
下载
关闭预览

相关内容

扩散模型是近年来快速发展并得到广泛关注的生成模型。它通过一系列的加噪和去噪过程,在复杂的图像分布和高斯分布之间建立联系,使得模型最终能将随机采样的高斯噪声逐步去噪得到一张图像。
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月21日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关资讯
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员