In this paper, we consider a class of stochastic midpoint and trapezoidal Lawson schemes for the numerical discretization of highly oscillatory stochastic differential equations. These Lawson schemes incorporate both the linear drift and diffusion terms in the exponential operator. We prove that the midpoint Lawson schemes preserve quadratic invariants and discuss this property as well for the trapezoidal Lawson scheme. Numerical experiments demonstrate that the integration error for highly oscillatory problems is smaller than that of some standard methods.
翻译:在本文中,我们考虑了一组高悬浮悬浮悬浮悬浮悬殊差异方程式的数字分解的随机中点和捕捉式拉森计划。这些劳森计划包含了指数操作员的线性漂移和扩散条件。我们证明中点劳森计划保留了四位变异物并讨论了这一特性以及捕捉式拉森计划。数字实验表明,高度悬浮悬浮问题集成错误小于某些标准方法。