We propose a novel extremal dependence measure called the partial tail-correlation coefficient (PTCC), in analogy to the partial correlation coefficient in classical multivariate analysis. The construction of our new coefficient is based on the framework of multivariate regular variation and transformed-linear algebra operations. We show how this coefficient allows identifying pairs of variables that have partially uncorrelated tails given the other variables in a random vector. Unlike other recently introduced conditional independence frameworks for extremes, our approach requires minimal modeling assumptions and can thus be used in exploratory analyses to learn the structure of extremal graphical models. Similarly to traditional Gaussian graphical models where edges correspond to the non-zero entries of the precision matrix, we can exploit classical inference methods for high-dimensional data, such as the graphical LASSO with Laplacian spectral constraints, to efficiently learn the extremal network structure via the PTCC. We apply our new method to study extreme risk networks in two different datasets (extreme river discharges and historical global currency exchange data) and show that we can extract meaningful extremal structures with meaningful domain-specific interpretations.
翻译:我们提出一种新的极端依赖性计量方法,称为部分尾热关系系数(PTCC),比照古典多变分析中的部分相关系数。我们的新系数的构建基于多变常规变异和直线代数操作框架。我们展示了该系数如何允许识别在随机矢量中其他变量中存在部分非焦相关尾数的变量组合。与其他最近引入的极端有条件独立框架不同,我们的方法需要最小的模型假设,因此可用于探索分析,以了解极端图形模型的结构。与传统的高斯图形模型类似,其边缘与精确矩阵的非零条目相对应,我们可以利用传统推断方法来获取高维数据,例如带有拉普尔谱限制的图形LASSO,通过PTCC有效地学习极端网络结构。我们采用了新的方法,在两个不同的数据集(极端河流排放和历史全球货币交换数据)中研究极端风险网络,并显示我们可以用有意义的具体区域解释来提取有意义的外壳结构。