Spike deconvolution is the problem of recovering the point sources from their convolution with a known point spread function, which plays a fundamental role in many sensing and imaging applications. In this paper, we investigate the local geometry of recovering the parameters of point sources$\unicode{x2014}$including both amplitudes and locations$\unicode{x2014}$by minimizing a natural nonconvex least-squares loss function measuring the observation residuals. We propose preconditioned variants of gradient descent (GD), where the search direction is scaled via some carefully designed preconditioning matrices. We begin with a simple fixed preconditioner design, which adjusts the learning rates of the locations at a different scale from those of the amplitudes, and show it achieves a linear rate of convergence$\unicode{x2014}$in terms of entrywise errors$\unicode{x2014}$when initialized close to the ground truth, as long as the separation between the true spikes is sufficiently large. However, the convergence rate slows down significantly when the dynamic range of the source amplitudes is large. To bridge this issue, we introduce an adaptive preconditioner design, which compensates for the learning rates of different sources in an iteration-varying manner based on the current estimate. The adaptive design provably leads to an accelerated convergence rate that is independent of the dynamic range, highlighting the benefit of adaptive preconditioning in nonconvex spike deconvolution. Numerical experiments are provided to corroborate the theoretical findings.
翻译:Spike 解剖是用已知的点扩散功能从其变相中恢复点源的问题,它在许多感测和成像应用中起着根本作用。在本文中,我们调查了恢复点源参数($\uncode{x2014}$)的本地几何方法,包括振幅和地点($unicode{x2014}$),包括振幅和地点($uncode{x2014}$)的振幅和地点($),以最大限度地减少测量观察残留量的自然非Confex最小平方损失功能。我们提议了梯度下降(GD)的前提条件变量,通过一些精心设计的前提条件矩阵缩小了搜索方向。我们首先设计了一个简单的固定先决条件设计,将各个地点的学习率与振动值不同,并显示它实现线性趋同率的趋同率($\uncode{x2014}$)的趋同率率率,只要真正的峰值之间的分离足够大。然而,当源源值振动范围缩小时,聚合速度会大大减慢下来。我们开始调整各个地点的学习率的理论的精确度。我们引入了一种适应性前导度的精确度,在目前的精确度上前期的精确度上调测测测测测测测测测测测测测测测。</s>