Quantifying species abundance is the basis for spatial ecology and biodiversity conservation. Abundance data are mostly collected through professional surveys as part of monitoring programs, often at a national level. These surveys rarely follow the same sampling protocol in different countries, which represents a challenge for producing abundance maps based on the information available for more than one country. We here present a novel solution for this methodological challenge with a case study concerning bird abundance in mid-Scandinavia. We use data from bird monitoring programs in Norway and Sweden. Each census collects abundance data following two different sampling protocols that each contain two different sampling methods. We propose a modeling framework that assumes a common Gaussian Random Field driving both the observed and true abundance with either a linear or a relaxed linear association between them. Thus, the models in this framework can integrate all sources of information involving count of organisms to produce one estimate for the expected abundance, its uncertainty and the covariate effects. Bayesian inference is performed using INLA and the SPDE approach for spatial modeling. We also present the results of a simulation study based on the census data from mid-Scandinavia to assess the performance of the models under misspecification. Finally, maps of the total expected abundance of the bird species present in our study region in mid-Scandinavia were produced. We found that the framework allows for consistent integration of data from surveys with different sampling protocols. Further, the simulation study showed that models with a relaxed linear specification are less sensitive to misspecification, compared to the model that assumes linear association between counts. Relaxed linear specifications improved goodness-of-fit, but not the predictive power of the models.


翻译:对物种丰量进行量化是空间生态学和生物多样性保护的基础。大量数据大多通过专业调查收集,作为监测方案的一部分,往往是在国家一级。这些调查很少遵循不同国家的相同抽样规程,这是根据一个以上国家现有资料制作丰度地图的挑战。我们在这里通过对中桑地那维亚鸟类丰度的案例研究,为这一方法挑战提出了一个新的解决办法。我们使用挪威和瑞典鸟类监测方案的数据。每次普查都根据两种不同精细的抽样规程收集丰度数据,其中每种均包含两种不同的取样方法。我们提出了一个模型框架,假设一个共同的高斯随机场驱动所观察到的和真实丰度,而它们之间的线性或较松散线性联系。因此,这一框架中的模型可以综合所有信息源,涉及生物的计数,以得出关于预期丰度、其不确定性和变异效应的估计数。我们利用国际实验室和SPDE方法进行空间建模的推算。我们还介绍了根据普查模型进行的一项模拟研究的结果,而不是两种不同的采样方法。我们提出了一个基于共同的标度的模拟数据模型的模型,用以推动所观察到的所观察到的实性和真实性的丰度,最终的精度,根据我们所制作的精度研究的精度的精度模型,我们所制作的精度的精度的精度的精度和测的精度的精度模型,我们根据的精度的精度的精度的精度研究的精度,从而根据了目前所测的精度模型,根据了所测度的精度的精度研究的精度的精度的精度的精度的精度模型,我们所测的精度研究的精度,根据的精度,从而根据的精度的精度的精度的精度的精度的精度的精度,我们所测的精度的精度研究的精度研究的精度的精度的精度的精度的精度的精度的精度的精度,从而的精度,从而的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度和测的精度的精度研究的精度的精度的精度的精度的精度的精度的精度的精度的精度

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
生成式对抗网络GAN异常检测
专知会员服务
116+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
生成式对抗网络GAN异常检测
专知会员服务
116+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员