There are demographic biases in current models used for facial recognition (FR). Our Balanced Faces In the Wild (BFW) dataset serves as a proxy to measure bias across ethnicity and gender subgroups, allowing one to characterize FR performances per subgroup. We show performances are non-optimal when a single score threshold is used to determine whether sample pairs are genuine or imposter. Across subgroups, performance ratings vary from the reported across the entire dataset. Thus, claims of specific error rates only hold true for populations matching that of the validation data. We mitigate the imbalanced performances using a novel domain adaptation learning scheme on the facial features extracted using state-of-the-art. Not only does this technique balance performance, but it also boosts the overall performance. A benefit of the proposed is to preserve identity information in facial features while removing demographic knowledge in the lower dimensional features. The removal of demographic knowledge prevents future potential biases from being injected into decision-making. This removal satisfies privacy concerns. We explore why this works qualitatively; we also show quantitatively that subgroup classifiers can no longer learn from the features mapped by the proposed.
翻译:目前用于面部识别的模型(FR)中存在人口偏差。我们在野外的平衡面(BFW)数据集作为衡量族裔和性别分组之间偏差的替代物,允许对每个分组的FR性能进行定性。我们显示,当使用单一分数阈值来确定样本对等是否真实或假冒时,业绩表现是不理想的。在各分组之间,业绩评级与整个数据集所报告的不同。因此,对特定误差率的声称只对与验证数据相匹配的人口来说是真实的。我们利用利用利用最新技术所提取的面部特征的新的领域适应性学习计划来缓解不平衡的性能。我们不仅能够实现这一技术平衡性能,而且还能提升总体业绩。提议的优点是保持面部特征的身份信息,同时消除较低维度特征的人口知识。人口知识的去除使今后潜在的偏向决策注入的偏向性不尽人所担心的隐私问题。我们探讨为什么这样做质量;我们还从数量上表明,分组分类人员无法再从所绘制的特征中学习。