A graph embedding algorithm embeds a graph into a low-dimensional space such that the embedding preserves the inherent properties of the graph. While graph embedding is fundamentally related to graph visualization, prior work did not exploit this connection explicitly. We develop Force2Vec that uses force-directed graph layout models in a graph embedding setting with an aim to excel in both machine learning (ML) and visualization tasks. We make Force2Vec highly parallel by mapping its core computations to linear algebra and utilizing multiple levels of parallelism available in modern processors. The resultant algorithm is an order of magnitude faster than existing methods (43x faster than DeepWalk, on average) and can generate embeddings from graphs with billions of edges in a few hours. In comparison to existing methods, Force2Vec is better in graph visualization and performs comparably or better in ML tasks such as link prediction, node classification, and clustering. Source code is available at https://github.com/HipGraph/Force2Vec.
翻译:图形嵌入算法将一个图形嵌入到一个低维空间中, 使嵌入的图形保留了图的固有特性。 虽然图形嵌入基本上与图形可视化有关, 先前的工作并未明确利用此连接。 我们开发了Force2Vec, 在图形嵌入设置中使用强制定向图形布局模型, 目的是在机器学习( ML) 和可视化任务中优异。 我们通过绘制其核心计算与线性代数的图解, 并利用现代处理器中的多种平行级别, 使 Force2Vec 高度平行。 由此产生的算法比现有方法( 平均而言比 DeepWalk 更快43x), 并且可以在数小时内从数十亿边缘的图形中生成嵌入。 与现有方法相比, Force2Vec 在图形可视化方面更好, 并在 ML 任务中进行可比较或更好。 例如链接预测、 节分类和聚合。 源码可在 https://github. com/ HipGraph/ Force2Vec 上查阅 。