A Neyman-Scott process is a special case of a Cox process. The latent and observable stochastic processes are both Poisson processes. We consider a deep Neyman-Scott process in this paper, for which the building components of a network are all Poisson processes. We develop an efficient posterior sampling via Markov chain Monte Carlo and use it for likelihood-based inference. Our method opens up room for the inference in sophisticated hierarchical point processes. We show in the experiments that more hidden Poisson processes brings better performance for likelihood fitting and events types prediction. We also compare our method with state-of-the-art models for temporal real-world datasets and demonstrate competitive abilities for both data fitting and prediction, using far fewer parameters.
翻译:内曼- 斯科特过程是考克斯过程的一个特例。 潜伏和可观测的随机过程都是 Poisson 过程。 我们考虑的是本文中的深Neyman- 斯科特过程, 网络的建筑部件都是Poisson 过程。 我们通过Markov 链子Monte Carlo开发高效的后部取样, 并用于基于概率的推断。 我们的方法为复杂的等级点过程的推断提供了空间。 我们在实验中显示, 更隐蔽的普瓦森过程为可能性的安装和事件类型的预测带来更好的性能。 我们还将我们的方法与时间真实世界数据集的最新模型进行比较, 并用更少的参数展示数据安装和预测的竞争性能力。