Machine learning models deployed on medical imaging tasks must be equipped with out-of-distribution detection capabilities in order to avoid erroneous predictions. It is unsure whether out-of-distribution detection models reliant on deep neural networks are suitable for detecting domain shifts in medical imaging. Gaussian Processes can reliably separate in-distribution data points from out-of-distribution data points via their mathematical construction. Hence, we propose a parameter efficient Bayesian layer for hierarchical convolutional Gaussian Processes that incorporates Gaussian Processes operating in Wasserstein-2 space to reliably propagate uncertainty. This directly replaces convolving Gaussian Processes with a distance-preserving affine operator on distributions. Our experiments on brain tissue-segmentation show that the resulting architecture approaches the performance of well-established deterministic segmentation algorithms (U-Net), which has not been achieved with previous hierarchical Gaussian Processes. Moreover, by applying the same segmentation model to out-of-distribution data (i.e., images with pathology such as brain tumors), we show that our uncertainty estimates result in out-of-distribution detection that outperforms the capabilities of previous Bayesian networks and reconstruction-based approaches that learn normative distributions. To facilitate future work our code is publicly available.
翻译:在医疗成像任务中部署的机器学习模型必须配备超出分布的检测能力,以避免错误的预测。 无法确定依赖深神经网络的分离检测模型是否适合检测医学成像的域变换。 高斯进程可以通过数学构造可靠地将分布中的数据点与分配中的数据点相分离。 因此, 我们建议为分级共振进程建立一个高效的贝叶西亚层参数, 其中包括在瓦塞斯坦-2号空间运行的高斯人进程, 以可靠地传播不确定性。 这直接取代了高斯进程, 以分布上的远程保存快感操作器取代了包括高斯进程。 我们在脑组织分隔方面的实验显示, 由此产生的结构结构接近了完善的确定性分解算法( U- Net) 的性能, 而先前的分解法并没有实现。 此外, 通过将相同的分解模型应用于分解数据( 例如脑肿瘤等病理学图像 ), 我们展示了我们的不确定性估计结果, 在分布中, 超越了我们现有的标准化网络的校验结果, 将使得我们未来的分解能力 超越了我们以往的分解方法。