Homophily -- the tendency of nodes to connect to others of the same type -- is a central issue in the study of networks. Here we take a local view of homophily, defining notions of first-order homophily of a node (its individual tendency to link to similar others) and second-order homophily of a node (the aggregate first-order homophily of its neighbors). Through this view, we find a surprising result for homophily values that applies with only minimal assumptions on the graph topology. It can be phrased most simply as "in a graph of red and blue nodes, red friends of red nodes are on average more homophilous than red friends of blue nodes." This gap in averages defies simple intuitive explanations, applies to globally heterophilous and homophilous networks and is reminiscent of but structurally distinct from the Friendship Paradox. The existence of this gap suggests intrinsic biases in homophily measurements between groups, and hence is relevant to empirical studies of homophily in networks.


翻译:相形之下 -- -- 结点与同类的其他人连接的倾向 -- -- 是网络研究中的一个中心问题。这里,我们从当地的角度来看待单点问题,定义第一阶点(其个人倾向于与类似其他对象连接)和第二阶点(其邻居的总一阶同系)的概念。通过这种观点,我们发现一个令人惊讶的结果,即单极点的数值只适用图形表层的最小假设。最简单的表述方式可以是 " 在红和蓝结点的图表中,红结点的红友平均比蓝结点的红友更具有同性。 " 平均而言,这种差距是简单的直觉解释,适用于全球的异性理论和同性理论网络,与友谊Paradox有不同的结构。这种差距的存在表明各组之间在同性测量中的内在偏差,因此与网络中的同性经验研究有关。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
113+阅读 · 2020年10月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月16日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员