A plethora of methods have been proposed to explain howdeep neural networks reach a decision but comparativelylittle effort has been made to ensure that the explanationsproduced by these methods are objectively relevant. Whiledesirable properties for a good explanation are easy to come,objective measures have been harder to derive. Here, we pro-pose two new measures to evaluate explanations borrowedfrom the field of algorithmic stability: relative consistencyReCo and mean generalizability MeGe. We conduct severalexperiments on multiple image datasets and network archi-tectures to demonstrate the benefits of the proposed measuresover representative methods. We show that popular fidelitymeasures are not sufficient to guarantee good explanations.Finally, we show empirically that 1-Lipschitz networks pro-vide general and consistent explanations, regardless of theexplanation method used, making them a relevant directionfor explainability.


翻译:提出了许多方法来解释神经神经网络是如何达到决定的,但相对而言,为确保这些方法所得出的解释在客观上具有相关性,已经做出了相对较少的努力。虽然很好解释的特性很容易出现,但客观措施比较难得出。在这里,我们提出两项新措施来评价从算法稳定性领域借用的解释:相对一致性ReCo和一般性MeGe。我们在多个图像数据集和网络古迹上进行了若干次实验,以展示拟议措施对代表性方法的益处。我们表明,大众忠诚度措施不足以保证解释良好。最后,我们从经验上表明,1-Lipschitz网络有利于一般性和一致的解释,而不论使用的解释方法如何,都使这些解释成为相关的方向。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2020年2月15日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员