The ternary betweenness relation of a tree, B(x,y,z) expresses that y is on the unique path between x and z. This notion can be extended to order-theoretic trees defined as partial orders such that the set of nodes larger than any node is linearly ordered. In such generalized trees, the unique "path" between two nodes can have infinitely many nodes. We generalize some results obtained in a previous article for the betweenness of join-trees. Join-trees are order-theoretic trees such that any two nodes have a least upper-bound. The motivation was to define conveniently the rank-width of a countable graph. We called quasi-tree the structure based on the betweenness relation of a join-tree. We proved that quasi-trees are axiomatized by a first-order sentence. Here, we obtain a monadic second-order axiomatization of betweenness in order-theoretic trees. We also define and compare several induced betweenness relations, i.e., restrictions to sets of nodes of the betweenness relations in generalized trees of different kinds. We prove that induced betweenness in quasi-trees is characterized by a first-order sentence. The proof uses order-theoretic trees.


翻译:B(x,y,z)树的永久间断关系表示,Y是在x和z之间的独特路径上。这个概念可以扩大到修饰性树木,被定义为部分的线性线性排列。在这种广泛的树中,两个节点之间独特的“路径”可以有无限多的节点。我们概括了上一个条款中取得的一些结果,以区分编织树之间的交错。联合树是秩序和理论的树,任何两个节点都有最小的上限。其动机是方便地界定可数图的分级线。我们根据连结树之间的交错关系而称之为准树结构。我们证明,准树是被一级句子分解的。在这里,我们得到了一个修配树之间分解的一阶。我们还定义和比较了两个节点之间的关系,即,即对可数图图的分界的分界系。我们称准树的结构是以连结的两端关系为基础。我们通过不同种类的典型的树木来证明,准树之间的分系的顺序。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月9日
Arxiv
1+阅读 · 2021年1月8日
Graph Analysis and Graph Pooling in the Spatial Domain
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员