We study approximation of multivariate functions from a separable Hilbert space in the randomized setting with the error measured in the weighted $L_2$ norm. We consider algorithms that use standard information $\Lambda^{\rm std}$ consisting of function values or general linear information $\Lambda^{\rm all}$ consisting of arbitrary linear functionals. We use the weighted least squares regression algorithm to obtain the upper estimates of the minimal randomized error using $\Lambda^{\rm std}$. We investigate the equivalences of various notions of algebraic and exponential tractability for $\Lambda^{\rm std}$ and $\Lambda^{\rm all}$ for the normalized or absolute error criterion. We show that in the randomized setting for the normalized or absolute error criterion, the power of $\Lambda^{\rm std}$ is the same as that of $\Lambda^{\rm all}$ for all notions of exponential and algebraic tractability without any condition. Specifically, we solve four Open Problems 98, 100-102 as posed by E.Novak and H.Wo\'zniakowski in the book: Tractability of Multivariate Problems, Volume III: Standard Information for Operators, EMS Tracts in Mathematics, Z\"urich, 2012.
翻译:在随机设置中,我们从一个可分解的 Hilbert 空格中研究多变量函数近似值, 以加权 $_ 2 标准值测量错误。 我们考虑使用标准信息 $Lambda\\\rm std} $(Lambda\rm std}$) 的算法, 由函数值或一般线性信息 $Lambda\\rm all} 构成, 由任意的线性函数构成。 我们使用加权最小方位回归算法, 以 $\Lambda\rm std} 来获取最小随机误差的上位估计值。 我们用 $\Lambda\rm\rm std} 来调查以 $Lambda\rm std} 和 指数性可移动性各种概念的等等值。 我们用所有条件来调查 标准或绝对错误标准值 的 ambdbda\\\\ rbdrialtial oral: we srocult le missional develop demotion.