Vehicular edge computing (VEC) is envisioned as a promising approach to process the explosive computation tasks of vehicular user (VU). In the VEC system, each VU allocates power to process partial tasks through offloading and the remaining tasks through local execution. During the offloading, each VU adopts the multi-input multi-out and non-orthogonal multiple access (MIMO-NOMA) channel to improve the channel spectrum efficiency and capacity. However, the channel condition is uncertain due to the channel interference among VUs caused by the MIMO-NOMA channel and the time-varying path-loss caused by the mobility of each VU. In addition, the task arrival of each VU is stochastic in the real world. The stochastic task arrival and uncertain channel condition affect greatly on the power consumption and latency of tasks for each VU. It is critical to design an optimal power allocation scheme considering the stochastic task arrival and channel variation to optimize the long-term reward including the power consumption and latency in the MIMO-NOMA VEC. Different from the traditional centralized deep reinforcement learning (DRL)-based scheme, this paper constructs a decentralized DRL framework to formulate the power allocation optimization problem, where the local observations are selected as the state. The deep deterministic policy gradient (DDPG) algorithm is adopted to learn the optimal power allocation scheme based on the decentralized DRL framework. Simulation results demonstrate that our proposed power allocation scheme outperforms the existing schemes.


翻译:在VEC系统中,每个VU都通过卸载和当地执行来分配处理部分任务的权力。在卸载过程中,每个VU都采用多输入多输出和非垂直多存取(MIMO-NOMA)频道,以提高频道频谱效率和能力。然而,由于MIMO-NOMA频道对VU的频道干扰,以及每个VEC的机动性造成时间变化路由路由路由路由路由路由损失,频道状况不确定。此外,每个VU的任务到来通过卸载和剩余任务到本地执行。在卸载过程中,每个VU都采用多投入多输出和非垂直多存取(MIMO-NOMA)频道,以提高频道的频谱效率和能力。但是,频道状况不确定,原因是由于MIMO-NOMA频道对VU的频道干扰,以及每个VEC的移动性路由时间变化式路由路由路由路由路由路由路由路由路由路由路由路由。此外,每个VU的任务到任务到真实世界的局部执行。每个VUL的任务到达时,对任务有路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由流分配分配分配分配分配分配分配分配分配分配分配分配分配分配分配分配分配安排的系统进行,对路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由、路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由路由

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员