The paper investigates two new use cases for the Boris Spectral Deferred Corrections (Boris-SDC) time integrator for plasma simulations. First, we show that using Boris-SDC as a particle pusher in an electrostatic particle-in-cell (PIC) code can, at least in the linear regime, improve simulation accuracy compared with the standard second order Boris method. In some instances, the higher order of Boris-SDC even allows a much larger time step, leading to modest computational gains. Second, we propose a modification of Boris-SDC for the relativistic regime. Based on an implementation of Boris-SDC in the \textsc{runko} PIC code, we demonstrate for a relativistic Penning trap that Boris-SDC retains its high order of convergence for velocities ranging from $0.5c$ to $>0.99c$. We also show that for the force-free case where acceleration from electric and magnetic field cancel, Boris-SDC produces less numerical drift than Boris.
翻译:本文调查了鲍里斯光谱递延更正(Boris-SDC)时间集成器(Boris-SDC)用于等离子模拟的两个新的使用案例。 首先,我们表明,在静电细胞颗粒(PIC)代码中,使用鲍里斯-SDC作为粒子推进器,至少可以在线性系统中提高模拟精确度,与标准第二顺序鲍里斯方法相比。 在某些情况下,鲍里斯-SDC的较高顺序甚至允许一个更大的时间步骤,导致微小的计算收益。 其次,我们建议修改鲍里斯-SDC用于相对论制度。 根据在\ textsc{runko} PIC代码中应用鲍里斯-SDC作为粒子推进器,我们演示了一个相对式的螺旋陷阱,即鲍里斯-SDC保留了0.5美元至0.99美元之间的速度高度趋同。 我们还表明,在无力案例中,电磁场加速取消加速时,鲍里斯-SDC产生的流量少于鲍里斯。