We introduce and analyze a lower envelope method (LEM) for the tracking of interfaces motion in multiphase problems. The main idea of the method is to define the phases as the regions where the lower envelope of a set of functions coincides with exactly one of the functions. We show that a variety of complex lower-dimensional interfaces naturally appear in the process. The phases evolution is then achieved by solving a set of transport equations. In the first part of the paper, we show several theoretical properties, give conditions to obtain a well-posed behaviour, and show that the level set method is a particular case of the LEM. In the second part, we propose a LEM-based numerical algorithm for multiphase shape optimization problems. We apply this algorithm to an inverse conductivity problem with three phases and present several numerical results.
翻译:我们引入并分析跟踪多阶段问题界面运动的低信封方法(LEM) 。 方法的主要理念是将各个阶段定义为一组功能的低信封与其中一项功能完全吻合的区域。 我们显示,在此过程中自然会出现各种复杂的低维界面。 然后通过解决一套传输方程式实现阶段演进。 在文件的第一部分, 我们展示了几个理论属性, 给出了获得充分行为条件, 并展示了水平设定方法是 LEM的一个特例。 在第二部分, 我们为多阶段形状优化问题提出了一个基于 LEM 的数字算法。 我们用此算法来解决三个阶段的反导性问题, 并给出了几个数字结果 。