Due to the important role of hulls of linear codes in coding theory, the problem about constructing arbitrary dimension hull linear codes has become a hot issue. In this paper, we generalize conclusions in \cite[]{RefJ47} and \cite[]{RefJ48} and prove that the Hermitian self-orthogonal codes of length $n$ can construct linear codes of length $n+2i$ and $n+2i+1$ with arbitrary-dimensional Hermitian hulls, where $i\geq 0$ is an integer. Then four new classes of Hermitian self-orthogonal GRS or extend GRS codes are constructed via two known multiplicative coset decompositions of $F_{q^2}$. The codes we constructed can be used to obtain new arbitrary dimension Galois hull linear codes by Theorems 11 and 12 in \cite[]{RefJ27} and finally we get many new EAQECCs whose code lengths ca take $n+2i$ and $n+2i+1$.
翻译:由于线性码体在编码理论中的重要作用,构建任意尺寸船体线性码的问题已成为一个热点问题。在本文件中,我们以\cite[{RefJ47}和\cite[{RefJ48}概括了结论,并证明Hermitian 自身-orodoculs(长度为$n+2i$和$n+2i+1$$)的长度线性编码可以用任意维度的Hermitian 船体来构建线性编码,其中$Qeq 0.00美元为整数。然后,通过已知的两种多复制式共振变组合($F ⁇ qQ ⁇ 2})来构建四个新类别的Hermitian 自我-orhotoonal GRS或扩展GRS 代码。我们所构建的代码可以用Theorems 11 和 12 in\cite[{RefJ27} 来获取新的任意尺寸加lois 船体线性编码,最后我们得到了许多新的EAQECC,其代号长度为$n+2i和$n+2i+1$1$。