Healthcare is one of the most important aspects of human life. Heart disease is known to be one of the deadliest diseases which is hampering the lives of many people around the world. Heart disease must be detected early so the loss of lives can be prevented. The availability of large-scale data for medical diagnosis has helped developed complex machine learning and deep learning-based models for automated early diagnosis of heart diseases. The classical approaches have been limited in terms of not generalizing well to new data which have not been seen in the training set. This is indicated by a large gap in training and test accuracies. This paper proposes a novel deep learning architecture using a 1D convolutional neural network for classification between healthy and non-healthy persons to overcome the limitations of classical approaches. Various clinical parameters are used for assessing the risk profile in the patients which helps in early diagnosis. Various techniques are used to avoid overfitting in the proposed network. The proposed network achieves over 97% training accuracy and 96% test accuracy on the dataset. The accuracy of the model is compared in detail with other classification algorithms using various performance parameters which proves the effectiveness of the proposed architecture.


翻译:医疗诊断的大规模数据有助于开发复杂的机器学习和深入学习模型,用于对心脏病进行早期自动诊断; 传统方法从不普及到培训组没有看到的新数据方面受到限制; 心病是阻碍全世界许多人生活的致命疾病之一; 心病是已知的最致命疾病之一,它阻碍着全世界许多人的生活; 必须及早发现心脏病,以便预防生命损失; 提供大规模医疗诊断数据有助于开发复杂的机器学习和深入学习模型,用于对心脏病进行早期诊断; 传统方法在不普及到培训组没有看到的新数据方面受到限制。 这一点表现在培训和测试精度方面的巨大差距上。 本文建议使用1D进化神经网络来为健康与非健康的人进行分类,以克服传统方法的局限性,建立一个新的深层次学习结构。 使用各种临床参数来评估病人的风险状况,帮助早期诊断。 使用各种技术避免在拟议网络中过度适应。 提议的网络在培训精度和测试数据集方面达到97%以上的测试精度。 模型的精确性与其他分类算法进行了详细比较,使用各种性能参数来证明拟议结构的有效性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Learning Discriminative Model Prediction for Tracking
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员