Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics by means of the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
翻译:Casimir用Stratonovich噪声来保护含有Stratonovich的静脉测谎 Lie-Poisson 等式的集成器正在开发扩展龙格-Kutta Munthe-Kaas 方法。 基底的 Lie- Poisson 结构在随机轨迹上被保存。 测算出利代数上的相关随机差分方程式。 这个差异方程式的解决方案通过指数图更新了利皮- Poisson 动态的演进。 构建的数字法保留了Casimir- 异物, 这对于长时间的整合很重要。 这用数字方式为蒸气重顶部和同质正弦方程的方程式做了说明。