Deep neural networks have been well-known for their superb handling of various machine learning and artificial intelligence tasks. However, due to their over-parameterized black-box nature, it is often difficult to understand the prediction results of deep models. In recent years, many interpretation tools have been proposed to explain or reveal how deep models make decisions. In this paper, we review this line of research and try to make a comprehensive survey. Specifically, we first introduce and clarify two basic concepts -- interpretations and interpretability -- that people usually get confused about. To address the research efforts in interpretations, we elaborate the designs of a number of interpretation algorithms, from different perspectives, by proposing a new taxonomy. Then, to understand the interpretation results, we also survey the performance metrics for evaluating interpretation algorithms. Further, we summarize the current works in evaluating models' interpretability using "trustworthy" interpretation algorithms. Finally, we review and discuss the connections between deep models' interpretations and other factors, such as adversarial robustness and learning from interpretations, and we introduce several open-source libraries for interpretation algorithms and evaluation approaches.


翻译:深心神经网络因其超能处理各种机器学习和人工智能任务而广为人知。然而,由于其超分的黑盒性质,往往难以理解深层模型的预测结果。近年来,提出了许多解释工具来解释或揭示深度模型的决策。在本文件中,我们审查了这一研究线并试图进行全面调查。具体地说,我们首先提出并澄清人们通常会混淆的两个基本概念 -- -- 解释和可解释性 -- -- 。为了处理解释方面的研究工作,我们从不同的角度,通过提出新的分类法,详细设计了一些解释算法的设计。然后,为了理解解释结果,我们还调查了用于评价解释算法的业绩计量。此外,我们总结了目前使用“可信”解释算法评估模型可解释性的工作。最后,我们审查并讨论深模型解释与其他因素之间的联系,例如对抗性强力和从解释中学习,我们引入了若干用于解释算法和评价方法的开放源图书馆。

1
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
46+阅读 · 2021年10月4日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员