Collaborative multi-agent robotic systems where agents coordinate by modifying a shared environment often result in undesired dynamical couplings that complicate the analysis and experiments when solving a specific problem or task. Simultaneously, biologically-inspired robotics rely on simplifying agents and increasing their number to obtain more efficient solutions to such problems, drawing similarities with natural processes. In this work we focus on the problem of a biologically-inspired multi-agent system solving collaborative foraging. We show how mean field techniques can be used to re-formulate such a stochastic multi-agent problem into a deterministic au- tonomous system. This de-couples agent dynamics, enabling the computation of limit behaviours and the analysis of optimality guarantees. Furthermore, we analyse how having finite number of agents affects the performance when compared to the mean field limit and we discuss the implications of such limit approximations in this multi-agent system, which have impact on more general collaborative stochastic problems.
翻译:合作型多试剂机器人系统,在这种系统中,代理机构通过改变共同的环境进行协调,往往导致不理想的动态组合,使分析和实验在解决特定问题或任务时复杂化。同时,由生物启发型机器人依靠简化型机器人和增加其数量,以获得解决这些问题的更有效办法,与自然过程相似。在这项工作中,我们集中处理由生物启发型多试剂系统解决协作饲料开发的问题。我们展示了如何使用中等的实地技术将这种随机型多试剂问题重新发展成一个确定型的Au-Nomous系统。这种脱交剂动态,使得能够计算限值行为和分析最佳性保证。此外,我们分析了与平均场限值相比,有限数量的试剂如何影响性能。我们讨论了这一多试剂系统中这种限值近似的影响,这些影响更普遍的协作性随机性问题。