Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, the photoisomerization of azobenzene allows a drug with an azo scaffold to be activated with light. In principle, photoswitches with useful reactive properties, such as high isomerization yields, can be identified through virtual screening with reactive simulations. In practice these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a neural network potential to accelerate such simulations for azobenzene derivatives. The model, which is based on diabatic states, is called the \textit{diabatic artificial neural network} (DANN). The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3,100 hypothetical molecules, and identify several species with extremely high quantum yields. Our results pave the way for fast and accurate virtual screening of photoactive compounds.
翻译:光诱发的化学过程在性质上普遍存在,具有广泛的技术应用。例如,azobenzene的光异构体化使一种带有azo scarffold的药物能够被光照激活。原则上,可以通过模拟反应性模拟的虚拟筛选来识别具有有用反应特性的光电开关,例如高度异构体化的产量。在实际中,这些模拟很少用于筛选,因为它们需要数百个轨道和昂贵的量子化学方法来说明非非非非非非异性兴奋性状态的效果。我们在这里引入了一个神经网络潜力,以加速对azobenzene衍生物的模拟。该模型以diabatic状态为基础,称为\ textit{diabitic 人造神经网络}(DanN)。这个网络比用于培训的量子化学方法快6个数量级。DANN可以转移到培训组以外的分子,预测与实验相关的不可见物种的量值产量。我们使用这个模型来几乎筛选3100个假设分子,并鉴定几个具有极高量子产量的物种。我们的结果为快速和精确的合成化合物的虚拟筛选铺垫了道路。