Diagrammatically speaking, grammatical calculi such as pregroups provide wires between words in order to elucidate their interactions, and this enables one to verify grammatical correctness of phrases and sentences. In this paper we also provide wirings within words. This will enable us to identify grammatical constructs that we expect to be either equal or closely related. Hence, our work paves the way for a new theory of grammar, that provides novel `grammatical truths'. We give a nogo-theorem for the fact that our wirings for words make no sense for preordered monoids, the form which grammatical calculi usually take. Instead, they require diagrams -- or equivalently, (free) monoidal categories.
翻译:从图表学角度讲,语法计算学,如预组,提供言词之间的电线,以阐明其相互作用,从而使得人们能够验证语法和句子的正确性。在本文中,我们还在文字中提供线条。这将使我们能够确定我们所期望的平等或密切相关的语法结构。因此,我们的工作为新的语法理论铺平了道路,该理论提供了新的“语法真理”。我们给出了一个“神话”来说明我们用词的线条对预先定的单体(语法计算法通常采取的形式)没有意义的事实。相反,它们需要图表 -- 或等效的(自由的)单项。