We consider an ultra-weak first order system discretization of the Helmholtz equation. By employing the optimal test norm, the `ideal' method yields the best approximation to the pair of the Helmholtz solution and its scaled gradient w.r.t.~the norm on $L_2(\Omega)\times L_2(\Omega)^d$ from the selected finite element trial space. On convex polygons, the `practical', implementable method is shown to be pollution-free when the polynomial degree of the finite element test space grows proportionally with $\log \kappa$. Numerical results also on other domains show a much better accuracy than for the Galerkin method.


翻译:注释: 1. 需要将Helmholtz保留为英文专有名词。 2. 对于$L_2(\Omega)\times L_2(\Omega)^d$中的$L_2$,需要以英语形式保留。 3. 在中文翻译中,“理想”和“实用”这两个词,是对照“ideal”和“practical”中给出的,因为它们在这里需要用作一个专业术语的翻译。

0
下载
关闭预览

相关内容

在Omega中,资源发放是乐观的(optimistic),每一个应用都发放了所有的可用的资源,冲突是在提交的时候被解决的。Omega的资源管理器,本质上是一个保存着每一个节点的状态关系数据库,并且用不同的乐观并发控制来解决冲突。这样的好处是其大大的提高了调度器的性能(完全的并行,full parallelism)和资源利用率。
【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
【干货书】数论与几何:算术几何导论,501页pdf
专知会员服务
51+阅读 · 2022年12月22日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关VIP内容
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员