While classic control theory offers state of the art solutions in many problem scenarios, it is often desired to improve beyond the structure of such solutions and surpass their limitations. To this end, \emph{\gls{rpl}} offers a formulation to improve existing controllers with reinforcement learning (RL) by learning an additive "residual" to the output of a given controller. However, the applicability of such an approach highly depends on the structure of the controller. Often, internal feedback signals of the controller limit an RL algorithm to adequately change the policy and, hence, learn the task. We propose a new formulation that addresses these limitations by also modifying the feedback signals to the controller with an RL policy and show superior performance of our approach on a contact-rich peg-insertion task under position and orientation uncertainty. In addition, we use a recent impedance control architecture as control framework and show the difficulties of standard RPL. Furthermore, we introduce an adaptive curriculum for the given task to gradually increase the task difficulty in terms of position and orientation uncertainty. A video showing the results can be found at https://youtu.be/SAZm_Krze7U .


翻译:虽然经典控制理论在许多问题情景中提供了最先进的解决方案,但通常希望改进这些解决方案的结构,超越这些解决方案的结构,超越其局限性。为此, emph=gls{rpl ⁇ 提供一种配方,通过学习对特定控制器输出的添加“剩余”来改进现有控制器。然而,这种方法的适用性在很大程度上取决于控制器的结构。 控制器的内部反馈信号往往限制RL算法,以充分改变政策,从而了解任务。我们建议一种新的配方,通过用RL政策修改给控制器的反馈信号,并显示我们在定位和方向不确定的情况下对接触-丰富peg-插入任务的方法的优异性。此外,我们使用最近的阻力控制架构作为控制框架,并显示标准的RPL的困难。此外,我们为给定的任务引入了适应性课程,以逐步增加定位和方向不确定性方面的任务难度。我们可以在 https://youtu.be/SAZm_Krze7U上找到显示结果的视频。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
已删除
将门创投
3+阅读 · 2019年11月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
9+阅读 · 2019年4月19日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员