In robots, nonprehensile manipulation operations such as pushing are a useful way of moving large, heavy or unwieldy objects, moving multiple objects at once, or reducing uncertainty in the location or pose of objects. In this study, we propose a reactive and adaptive method for robotic pushing that uses rich feedback from a high-resolution optical tactile sensor to control push movements instead of relying on analytical or data-driven models of push interactions. Specifically, we use goal-driven tactile exploration to actively search for stable pushing configurations that cause the object to maintain its pose relative to the pusher while incrementally moving the pusher and object towards the target. We evaluate our method by pushing objects across planar and curved surfaces. For planar surfaces, we show that the method is accurate and robust to variations in initial contact position/angle, object shape and start position; for curved surfaces, the performance is degraded slightly. An immediate consequence of our work is that it shows that explicit models of push interactions might be sufficient but are not necessary for this type of task. It also raises the interesting question of which aspects of the system should be modelled to achieve the best performance and generalization across a wide range of scenarios. Finally, it highlights the importance of testing on non-planar surfaces and in other more complex environments when developing new methods for robotic pushing.


翻译:在机器人中,诸如推推等非致命操纵操作是移动大、重或不动物体、同时移动多个物体或减少物体位置或表面的不确定性的有用方法。在本研究中,我们建议一种反应性和适应性方法,用于机器人推动,使用高分辨率光学触动传感器的丰富反馈来控制推动运动,而不是依赖分析或数据驱动推动互动模式。具体地说,我们使用目标驱动触动性探索,积极寻找稳定的推动配置,使物体保持相对于推动器的姿势,同时逐步将推推推器和物体移向目标。我们通过将物体推过平面和弯曲表面来评估我们的方法。对于平面表面,我们表明该方法准确而有力,可以改变初始接触位置/角、物体形状和起始位置;对于弯曲的表面,性能略有下降。我们工作的直接后果是,它表明明确的推动相互作用模型可能足够,但对于这类任务来说并不必要。它还提出了一个有趣的问题,即通过将系统哪些方面作为方法,将物体推向平面表面表面和弯的表面表面表面表面表面表面表面表面表面表面表面,最后可以实现最佳的进度。最后在较广泛的范围上测试。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年5月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年5月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员