This work combines multilevel Monte Carlo methods with importance sampling (IS) to estimate rare event quantities that can be expressed as the expectation of a Lipschitz observable of the solution to the McKean-Vlasov stochastic differential equation. We first extend the double loop Monte Carlo (DLMC) estimator, introduced in this context in our previous work [Ben Rached et al. 2022], to the multilevel setting. We formulate a novel multilevel DLMC (MLDLMC) estimator, and perform a comprehensive work-error analysis yielding new and improved complexity results. Crucially, we also devise an antithetic sampler to estimate level differences that guarantees reduced work complexity for the MLDLMC estimator compared with the single level DLMC estimator. To tackle rare events, we apply the same single level IS scheme, obtained via stochastic optimal control in [Ben Rached et al. 2022], over all levels of the MLDLMC estimator. Combining IS and MLDLMC not only reduces computational complexity by one order, but also drastically reduces the associated constant, ensuring feasible estimates for rare event quantities. We illustrate effectiveness of proposed MLDLMC estimator on the Kuramoto model from statistical physics with Lipschitz observables, confirming reduced complexity from $\mathcal{O}(TOL_r^{-4})$ for the single level DLMC estimator to $\mathcal{O}(TOL_r^{-3})$ while providing feasible estimation for rare event quantities up to the prescribed relative error tolerance $TOL_r$.
翻译:这项工作将多层次的蒙特卡洛(DLMC)方法与重要取样(IS)结合起来,估计稀有事件数量,以利普西茨观察麦肯-弗拉索夫(McKan-Vlasov)软体差异方程式的解决方案的预期值来表示。我们首先将我们先前工作(Ben Rached et al.2022)中引入的双环蒙特卡洛(DLMC)测量仪推广到多层次设置。我们开发了一个新的多层次的DLMC(MLLLLMC)测量仪,并开展了一项全面的工作加速器分析,得出了新的和更高的复杂度结果。非常重要的是,我们还设计了一种抗异性取样器来估计MLMLMC(ML)测量仪的水平差异,保证MLMLMC(ML)测量值的计算复杂性降低,同时将OLLLML(O)估算值降低,同时将SLLO(O)的计算效率大幅降低,同时将SLLLO(O)的计算结果降低至O(O)的固定水平。