In recent years, SPDEs have become a well-studied field in mathematics. With their increase in popularity, it becomes important to efficiently approximate their solutions. Thus, our goal is a contribution towards the development of efficient and practical time-stepping methods for SPDEs. Operator splitting schemes are a powerful tool for deterministic and stochastic differential equations. An example is given by domain decomposition schemes, where we split the domain into sub-domains. Instead of solving one expensive problem on the entire domain, we deal with cheaper problems on the sub-domains. This is particularly useful in modern computer architectures, as the sub-problems may often be solved in parallel. While splitting methods have already been used to study domain decomposition methods for deterministic PDEs, this is a new approach for SPDEs. We provide an abstract convergence analysis of a splitting scheme for stochastic evolution equations and state a domain decomposition scheme as an application of the setting. The theoretical results are verified through numerical experiments.
翻译:暂无翻译