Multi-task learning (MTL) jointly learns a set of tasks by sharing parameters among tasks. It is a promising approach for reducing storage costs while improving task accuracy for many computer vision tasks. The effective adoption of MTL faces two main challenges. The first challenge is to determine what parameters to share across tasks to optimize for both memory efficiency and task accuracy. The second challenge is to automatically apply MTL algorithms to an arbitrary CNN backbone without requiring time-consuming manual re-implementation and significant domain expertise. This paper addresses the challenges by developing the first programming framework AutoMTL that automates efficient MTL model development for vision tasks. AutoMTL takes as inputs an arbitrary backbone convolutional neural network (CNN) and a set of tasks to learn, and automatically produces a multi-task model that achieves high accuracy and small memory footprint simultaneously. Experiments on three popular MTL benchmarks (CityScapes, NYUv2, Tiny-Taskonomy) demonstrate the effectiveness of AutoMTL over state-of-the-art approaches as well as the generalizability of AutoMTL across CNNs. AutoMTL is open-sourced and available at https://github.com/zhanglijun95/AutoMTL.
翻译:多任务学习(MTL)通过在任务之间共享参数,共同学习一系列任务;这是降低存储成本,同时提高许多计算机愿景任务准确性的一个很有希望的方法,可以降低存储成本,同时提高许多计算机愿景任务的任务准确性; 有效采用MTL面临两大挑战; 第一个挑战是确定如何共享各种任务,以优化记忆效率和任务准确性; 第二个挑战是将MTL算法自动应用到独断的CNN骨干上,而不需要花费时间的手工实施和重要的领域专门知识; 本文件通过开发第一个程序框架AutMTL应对挑战,将高效率的MTL模型开发用于愿景任务。 AutMTL将任意的骨干神经神经网络(CNN)和一套用于学习和自动生成多任务模型,同时实现高准确性和小记忆足迹。 对三种流行的 MTL基准(CityScapes、NYUv2、Tny-Taskoomy)的实验显示AutMTMTL在州-艺术方法上的效力,以及在CNNCMTMT/MTMT/MATMT上可以使用。