Semantic Change Detection (SCD) refers to the task of simultaneously extracting the changed areas and the semantic categories (before and after the changes) in Remote Sensing Images (RSIs). This is more meaningful than Binary Change Detection (BCD) since it enables detailed change analysis in the observed areas. Previous works established triple-branch Convolutional Neural Network (CNN) architectures as the paradigm for SCD. However, it remains challenging to exploit semantic information with a limited amount of change samples. In this work, we investigate to jointly consider the spatio-temporal dependencies to improve the accuracy of SCD. First, we propose a Semantic Change Transformer (SCanFormer) to explicitly model the 'from-to' semantic transitions between the bi-temporal RSIs. Then, we introduce a semantic learning scheme to leverage the spatio-temporal constraints, which are coherent to the SCD task, to guide the learning of semantic changes. The resulting network (SCanNet) significantly outperforms the baseline method in terms of both detection of critical semantic changes and semantic consistency in the obtained bi-temporal results. It achieves the SOTA accuracy on two benchmark datasets for the SCD.
翻译:语义变化检测( SCD) 指的是同时提取遥感图像(RSI) 中变化地区和语义类别( 变化前后) 的任务。 这比二进制变化检测( BCD) 更有意义, 因为它能够对观测到的地区进行详细的变化分析。 先前的工程已经建立了三三部门 革命神经网络( CNN) 结构, 作为 SCD 的范例。 然而, 利用数量有限的变化样本的语义信息仍然具有挑战性。 在这项工作中, 我们调查共同考虑空间- 时间依赖性, 以提高 SCD 的准确性。 首先, 我们提议建立一个语义变化变换器( SCanFormer), 以明确模拟双时立调神经神经网络( CNN) 之间的“ 从到 语义过渡 ” 。 然后, 我们引入一个语义学习计划, 来利用与 SCD 任务一致的语义- 制约, 来指导对语义变化的学习。 由此形成的网络( ScanNet) 大大超越了在检测关键地震数据结果的精确性两个方面获得的基数方法。