The forgotten topological index of a graph $G$, denoted by $F(G)$, is defined as the sum of weights $d(u)^{2}+d(v)^{2}$ over all edges $uv$ of $G$ , where $d(u)$ denotes the degree of a vertex $u$. In this paper, we give sharp upper bounds of the F-index (forgotten topological index) over bicyclic graphs, in terms of the order and maximum degree.
翻译:以美元(G)表示的被遗忘的G$图的表层指数被定义为在所有边缘的重量之和,即$(u)=2 ⁇ 2 ⁇ d(v)=2美元,即所有边缘的重量之和,即$(u)=$1美元,即顶点为odex $1美元。在本文中,我们给出了F-index(被遗忘的表层指数)相对于双环图的直线和最大度的直线。