This work investigates the use of Neural implicit representations, specifically Neural Radiance Fields (NeRF), for geometrical queries and motion planning. We show that by adding the capacity to infer occupancy in a radius to a pre-trained NeRF, we are effectively learning an approximation to a Euclidean Signed Distance Field (ESDF). Using backward differentiation of the augmented network, we obtain an obstacle gradient that is integrated into an obstacle avoidance policy based on the Riemannian Motion Policies (RMP) framework. Thus, our findings allow for very fast sampling-free obstacle avoidance planning in the implicit representation.
翻译:这项工作调查了在几何查询和运动规划中使用神经隐含表征,特别是神经辐射场(NERF)的情况,我们表明,通过将半径内推推推入事先培训过的内瑞弗的能力,我们正在有效地学习接近欧洲通用距离场(ESDF)的近似值,利用扩大后网络的落后差异,我们获得障碍梯度,它被纳入基于里曼尼动力政策框架的避免障碍政策,因此,我们的调查结果使得隐含代表制的避免计划能够非常快速地排除抽样障碍。