Recent advances in deep reinforcement learning (DRL) have largely promoted the performance of adaptive traffic signal control (ATSC). Nevertheless, regarding the implementation, most works are cumbersome in terms of storage and computation. This hinders their deployment on scenarios where resources are limited. In this work, we propose TinyLight, the first DRL-based ATSC model that is designed for devices with extremely limited resources. TinyLight first constructs a super-graph to associate a rich set of candidate features with a group of light-weighted network blocks. Then, to diminish the model's resource consumption, we ablate edges in the super-graph automatically with a novel entropy-minimized objective function. This enables TinyLight to work on a standalone microcontroller with merely 2KB RAM and 32KB ROM. We evaluate TinyLight on multiple road networks with real-world traffic demands. Experiments show that even with extremely limited resources, TinyLight still achieves competitive performance. The source code and appendix of this work can be found at \url{https://bit.ly/38hH8t8}.
翻译:最近深入强化学习(DRL)的进展在很大程度上促进了适应性交通信号控制(ATSC)的性能。然而,关于实施,大多数工程在存储和计算方面都十分繁琐。这阻碍了在资源有限的情况下部署这些工程。在这项工作中,我们提议了TinyLight,这是为资源极为有限的装置设计的第一种基于DRL的ATSC模型。小Light首先制作了一部超版图,将大量候选特征与一组轻量网络块联系起来。然后,为了减少模型的资源消耗,我们自动在超级图中填充边缘,并设置了一个新的最小化的昆虫目标功能。这使得TinyLight能够在一个仅使用2KBRAM和32KB ROM的独立微控制器上工作。我们评估了具有现实世界交通需求的多条公路网络上的TinyLight。实验显示,即使资源极为有限,TnyLight仍然能取得竞争性的性能。这项工作的来源代码和附录可以在\urlhttps://bitly.38H88}上找到。