The goal of this paper is to reduce the total complexity of gradient-based methods for two classes of problems: affine-constrained composite convex optimization and bilinear saddle-point structured non-smooth convex optimization. Our technique is based on a double-loop inexact accelerated proximal gradient (APG) method for minimizing the summation of a non-smooth but proximable convex function and two smooth convex functions with different smoothness constants and computational costs. Compared to the standard APG method, the inexact APG method can reduce the total computation cost if one smooth component has higher computational cost but a smaller smoothness constant than the other. With this property, the inexact APG method can be applied to approximately solve the subproblems of a proximal augmented Lagrangian method for affine-constrained composite convex optimization and the smooth approximation for bilinear saddle-point structured non-smooth convex optimization, where the smooth function with a smaller smoothness constant has significantly higher computational cost. Thus it can reduce total complexity for finding an approximately optimal/stationary solution. This technique is similar to the gradient sliding technique in the literature. The difference is that our inexact APG method can efficiently stop the inner loop by using a computable condition based on a measure of stationarity violation, while the gradient sliding methods need to pre-specify the number of iterations for the inner loop. Numerical experiments demonstrate significantly higher efficiency of our methods over an optimal primal-dual first-order method and the gradient sliding methods.


翻译:本文的目标是降低两类问题基于梯度的方法的复杂程度: 松散的复合锥形优化和双线马鞍点结构非moos convex优化。 我们的技术基于双环不超快加速准度梯度(APG)法, 以尽量减少非单向但相近的粘结函数和两个平滑的粘结函数的相加性, 并具有不同的平滑常态常量和计算成本。 与标准 APG 方法相比, 如果一个平滑的组件有更高的内部计算成本, 且比其他更低的平滑马鞍点结构的平滑性, APG 方法可以降低总计算成本。 有了这个属性, 异常的APG方法可以用于大约解决一个非双向增强的拉格朗格方法的相加加和两个顺流的调和函数, 双线马鞍点结构非movex优化, 与较平滑的平滑函数相比, 平滑的平滑性计算成本会大大高于其他的计算成本, 但平滑的平滑性平滑性方法可以用来测量我们最优的平流的平流方法, 。 平流的平流的平流方法可以降低的平流的平流法 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员