Accurate traffic forecasting is essential for smart cities to achieve traffic flow control, route planning, and detection. Although many spatial-temporal methods are currently proposed, these methods are deficient in capturing the spatial-temporal dependence of traffic data synchronously. In addition, most of the methods ignore the dynamically changing correlations between road network nodes that arise as traffic data changes. To address the above challenges, we propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) for traffic forecasting in this paper. In STIDGCN, we propose an interactive dynamic graph convolution structure, which first divides the sequences at intervals and captures the spatial-temporal dependence of the traffic data simultaneously through an interactive learning strategy for effective long-term prediction. We propose a novel dynamic graph convolution module consisting of a graph generator, fusion graph convolution. The dynamic graph convolution module can use the input traffic data, pre-defined graph structure to generate a graph structure and fuse it with the defined adaptive adjacency matrix, which is used to achieve the filling of the pre-defined graph structure and simulate the generation of dynamic associations between nodes in the road network. Extensive experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.
翻译:准确的交通预报对于智能城市实现交通流量控制、路线规划和检测至关重要。虽然目前提出了许多空间时位方法,但这些方法在同步地捕捉交通数据的空间时空依赖性方面尚有缺陷。此外,大多数方法忽视了交通数据变化时产生的公路网络节点之间的动态变化关系。为了应对上述挑战,我们提议为本文件的交通预报建立一个以神经网络为基础的空间网络-时空交互式动态动态图表组合网络(STIDGCN ) 。在STIDGCN 中,我们提议了一个交互式动态图形组合结构,它首先通过有效长期预测的互动学习战略,将间隔序列分开,并同时捕捉到交通数据的空间时空依赖性。我们提出一个新的动态图形组合模块,由图表生成器、组合图组合组合组合组合组成。动态图形组合模块可以使用输入流量数据、预定义的图形结构来生成图表结构,并将它与定义的适应性组合组合组合组合结合起来,该结构将用来在固定的交通流量前结构中进行分隔,并同时通过互动学习通信数据的空间数据依赖有效长期预测。我们提出了一个新的动态数据流模型模型,以演示全球数据库的模型。