We study the sampling problem for the ferromagnetic Ising model with consistent external fields, and in particular, Swendsen-Wang dynamics on this model. We introduce a new grand model unifying two closely related models: the subgraph world and the random cluster model. Through this new viewpoint, we show: (1) polynomial mixing time bounds for Swendsen-Wang dynamics and (edge-flipping) Glauber dynamics of the random cluster model, generalising the bounds and simplifying the proofs for the no-field case by Guo and Jerrum (2018); (2) near linear mixing time for the two dynamics above if the maximum degree is bounded and all fields are (consistent and) bounded away from $1$.
翻译:我们用一致的外部领域研究铁磁系模型的取样问题,特别是Swendsen-Wang这一模型的动态。我们引入了一个新的巨型模型,将两个密切相关的模型统一起来:子谱世界和随机集束模型。我们通过这一新的观点显示:(1) 随机集束模型的Swendsen-Wang动态和(边缘-边缘)光栅动态的多元混合时限,对Guo和Jerrum的无野案例的界限进行概括,并简化证据(2018年);(2) 如果最大程度受约束,所有领域(一致和)都与1美元无关,则上述两个动态的线性混合时间接近线性。