Partial information decompositions (PIDs) identify different modes in which information from multiple sources may affect a target, by isolating synergistic, redundant, and unique contributions to the mutual information. While many works have studied aspects of PIDs for Gaussian and discrete distributions, the case of general continuous distributions is still uncharted territory. In this work we present a method for estimating the unique information in continuous distributions, for the case of two sources and one target. Our method solves the associated optimization problem over the space of distributions with constrained marginals by combining copula decompositions and techniques developed to optimize variational autoencoders. We illustrate our approach by showing excellent agreement with known analytic results for Gaussians and by analyzing model systems of three coupled random variables.
翻译:部分信息分解(PIDs)通过分离协同、冗余和对相互信息的独特贡献,确定多种来源的信息可能对目标产生影响的不同模式; 虽然许多工作研究了高山和离散分布的PIDs方面,但一般连续分布的情况仍然是未知领域; 在这项工作中,我们提出了一个方法来估计连续分布的独特信息,即两个来源和一个目标; 我们的方法通过将焦云分解和为优化变异自动计算器而开发的技术结合起来,解决了与受限制边缘分布空间相关的优化问题; 我们展示了我们的方法,对已知的高山分析结果表示极好的一致,并分析了三种相伴随机变量的模型系统。