Let $G = (A \cup B,E)$ be a bipartite graph where the set $A$ consists of agents or main players and the set $B$ consists of jobs or secondary players. Every vertex has a strict ranking of its neighbors. A matching $M$ is popular if for any matching $N$, the number of vertices that prefer $M$ to $N$ is at least the number that prefer $N$ to $M$. Popular matchings always exist in $G$ since every stable matching is popular. A matching $M$ is $A$-popular if for any matching $N$, the number of agents (i.e., vertices in $A$) that prefer $M$ to $N$ is at least the number of agents that prefer $N$ to $M$. Unlike popular matchings, $A$-popular matchings need not exist in a given instance $G$ and there is a simple linear time algorithm to decide if $G$ admits an $A$-popular matching and compute one, if so. We consider the problem of deciding if $G$ admits a matching that is both popular and $A$-popular and finding one, if so. We call such matchings fully popular. A fully popular matching is useful when $A$ is the more important side -- so along with overall popularity, we would like to maintain ``popularity within the set $A$''. A fully popular matching is not necessarily a min-size/max-size popular matching and all known polynomial-time algorithms for popular matching problems compute either min-size or max-size popular matchings. Here we show a linear time algorithm for the fully popular matching problem, thus our result shows a new tractable subclass of popular matchings.


翻译:$G = (A\ cup B, E) 美元 = (A\ cup B) 美元 = (A\ cup B, E) 是一个双部分图, 设定的美元由代理商或主要玩家组成, 设定的 $B$ 由工作或二级玩家组成 。 每个顶端都有严格的邻居排名。 匹配的美美美美$至少是喜欢美元对美元的牌数, 与流行匹配相比, 最喜欢美元对美的牌数至少是比美元对美元的牌数。 普级配价总是以$G$为单位, 因为每个稳定配价都是受欢迎的。 匹配的美美美方是美元, 完全以美元为单位。 我们所知道的百利值比值比值比值比值至少是美元。 与大众比值不同的是, 美元比值比值比值比值比值比值比值比值比值比值比值比值高多少 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员