Deep learning (DL) models are widely used to provide a more convenient and smarter life. However, biased algorithms will negatively influence us. For instance, groups targeted by biased algorithms will feel unfairly treated and even fearful of negative consequences of these biases. This work targets biased generative models' behaviors, identifying the cause of the biases and eliminating them. We can (as expected) conclude that biased data causes biased predictions of face frontalization models. Varying the proportions of male and female faces in the training data can have a substantial effect on behavior on the test data: we found that the seemingly obvious choice of 50:50 proportions was not the best for this dataset to reduce biased behavior on female faces, which was 71% unbiased as compared to our top unbiased rate of 84%. Failure in generation and generating incorrect gender faces are two behaviors of these models. In addition, only some layers in face frontalization models are vulnerable to biased datasets. Optimizing the skip-connections of the generator in face frontalization models can make models less biased. We conclude that it is likely to be impossible to eliminate all training bias without an unlimited size dataset, and our experiments show that the bias can be reduced and quantified. We believe the next best to a perfect unbiased predictor is one that has minimized the remaining known bias.


翻译:深度学习模式( DL) 被广泛用于提供更方便、更聪明的生活。 然而, 偏向算法会对我们产生负面的影响。 例如, 偏向算法所针对的群体会感到不公平对待, 甚至害怕这些偏向的负面后果。 这项工作针对偏向的基因模型的行为, 指出偏见的原因, 并消除这些偏见。 我们可以( 如预期的那样)得出结论, 偏向性数据导致对正面化模型的偏向预测。 将培训数据中男女面孔的比例差别化可能对测试数据中的行为产生实质性影响: 我们发现, 似乎显而易见的50:50比例的选择并不是减少女性脸上偏向行为的最好办法, 与我们最高的84%的偏向率相比, 该套数据是71%的不带偏见的。 生成和产生不正确的性别表情是这些模型的两种行为。 此外, 面对面面部模型中只有某些层次容易产生偏向性的数据元件。 认为, 面对面模型的跳过连接可以减少模型的偏向性。 我们的结论是, 下一步不可能消除所有培训偏向性偏向性, 而我们所知道的偏向性最起码的实验是不变的。

0
下载
关闭预览

相关内容

GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
43+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员